使用GPU加速numpy运算

尚无评论

自2012年AlexNet横空出世以来,GPU用于为矩阵运算进行加速开始在工业界和研究人员中获得了广泛关注。尤其是近来推出的各种深度学习框架,如mxnet、TensorFlow等,GPU加速更是不可或缺,成了提升运算速度的法宝。

然而,作为在Python中占据基础地位的numpy却始终没能提供这一功能,我们无法灵活地使用GPU为numpy的矩阵运算进行加速。不过,近来,作为mxnet的开发者,dmlc在mxnet的基础上,进一步开发了minpy,其为矩阵运算提供了GPU加速,而且可以做到与numpy近乎完美兼容;甚至有时,不需改动一行代码,只需在程序的开头将import numpy as np改为import minpy.numpy as np即可实现GPU加速,可谓十分省事儿方便。

在 2017-08-04 发布于 人工智能 类别下以来已有385人读过本文
阅读全文